The effect of structure and isomerism on the vapor pressures of organic molecules and its potential atmospheric relevance

Abstract:
Abstract Knudsen Effusion Mass Spectrometry (KEMS) was used to find the solid state vapor pressures of a range of atmospherically relevant organic molecules from 298\u2009K to 333\u2009K. The selection of species analyzed allowed for the effect of structural isomerism, specifically positional isomerism, and stereoisomerism, specifically geometric isomerism, on solid state vapor pressure to be investigated. In addition, the effect of varying the number of carboxylic acid groups present within a molecule’s structure and of varying alkyl chain length was assessed. The solid state vapor pressures were converted to subcooled liquid vapor pressures using experimental heat of fusion and melting point values. The resulting subcooled liquid vapor pressures were found to be up to 7 orders of magnitude lower than the vapor pressures estimated from models. Some of this variation between experimentally determined subcooled liquid vapor pressures and predicted vapor pressures, which use group contribution methods, can be attributed to the effects of isomerism which are largely not taken into account in models. Whilst these techniques might have both structural and parametric uncertainties, of the compound classes tested, a general inverse relationship between melting point and solid state vapor pressure was observed. Within each compound class the variations in vapor pressure can be attributed to the number and size of functional groups present and the relative positions of those functional groups to each other both positionally and geometrically. These two factors impact upon both the molecules’ dipole moments and upon their ability to interact both intramolecularly and intermolecularly via hydrogen bonding, thus explaining the differences in observed vapor pressure. Partitioning calculations using a range of condensed mass loadings show that whilst using vapor pressure values derived from models would put most of the compounds in the vapor phase, using the experimental values obtained here would mean a significant fraction of the organic molecules would be in the condensed phase. This could have a significant impact upon the formation and nature of atmospheric aerosol, and comparisons with ambient data obtained from other mass spectrometry techniques during bonfire night in Manchester in 2016 are made in an attempt to assess this potential atmospheric importance.
Author Listing: Caroline Dang;Thomas J. Bannan;Petroc Shelley;Michael Priestley;Stephen D. Worrall;John Waters;Hugh Coe;Carl J. Percival;David Topping
Volume: 53
Pages: 1040 - 1055
DOI: 10.1080/02786826.2019.1628177
Language: English
Journal: Aerosol Science and Technology

AEROSOL SCIENCE AND TECHNOLOGY

AEROSOL SCI TECH

影响因子:2.8 是否综述期刊:否 是否OA:否 是否预警:不在预警名单内 发行时间:1982 ISSN:0278-6826 发刊频率:Monthly 收录数据库:SCIE/Scopus收录 出版国家/地区:UNITED STATES 出版社:Taylor and Francis Ltd.

期刊介绍

Aerosol Science and Technology publishes theoretical, numerical and experimental investigations papers that advance knowledge of aerosols and facilitate its application. Articles on either basic or applied work are suitable. Examples of topics include instrumentation for the measurement of aerosol physical, optical, chemical and biological properties; aerosol dynamics and transport phenomena; numerical modeling; charging; nucleation; nanoparticles and nanotechnology; lung deposition and health effects; filtration; and aerosol generation. Consistent with the criteria given above, papers that deal with the atmosphere, climate change, indoor and workplace environments, homeland security, pharmaceutical aerosols, combustion sources, aerosol synthesis reactors, and contamination control in semiconductor manufacturing will be considered. AST normally does not consider papers that describe routine measurements or models for aerosol air quality assessment.

气溶胶科学和技术出版理论,数值和实验研究论文,推进气溶胶的知识和促进其应用。基础或应用工作的文章都是合适的。主题的例子包括测量气溶胶物理、光学、化学和生物特性的仪器;气溶胶动力学和传输现象;数值模拟;成核;纳米粒子和纳米技术;肺沉积和健康影响;过滤、和气溶胶产生。与上述标准一致,涉及大气、气候变化、室内和工作场所环境、国土安全、药用气雾剂、燃烧源、气雾剂合成反应器和半导体制造中的污染控制的论文将被考虑。AST通常不考虑描述常规测量或气溶胶空气质量评估模型的论文。

年发文量 94
国人发稿量 7
国人发文占比 7.45%
自引率 10.7%
平均录取率 较难
平均审稿周期 平均3.0个月
版面费 -
偏重研究方向 环境科学-工程:化工
期刊官网 http://www.tandfonline.com/toc/uast20/current
投稿链接 http://mc.manuscriptcentral.com/ast

质量指标占比

研究类文章占比 OA被引用占比 撤稿占比 出版后修正文章占比
98.94% 29.34% 0.00% 0.00%

相关指数

{{ relationActiveLabel }}
{{ item.label }}

期刊预警不是论文评价,更不是否定预警期刊发表的每项成果。《国际期刊预警名单(试行)》旨在提醒科研人员审慎选择成果发表平台、提示出版机构强化期刊质量管理。

预警期刊的识别采用定性与定量相结合的方法。通过专家咨询确立分析维度及评价指标,而后基于指标客观数据产生具体名单。

具体而言,就是通过综合评判期刊载文量、作者国际化程度、拒稿率、论文处理费(APC)、期刊超越指数、自引率、撤稿信息等,找出那些具备风险特征、具有潜在质量问题的学术期刊。最后,依据各刊数据差异,将预警级别分为高、中、低三档,风险指数依次减弱。

《国际期刊预警名单(试行)》确定原则是客观、审慎、开放。期刊分区表团队期待与科研界、学术出版机构一起,夯实科学精神,打造气正风清的学术诚信环境!真诚欢迎各界就预警名单的分析维度、使用方案、值得关切的期刊等提出建议!

预警情况 查看说明

时间 预警情况
2024年02月发布的2024版 不在预警名单中
2023年01月发布的2023版 不在预警名单中
2021年12月发布的2021版 不在预警名单中
2020年12月发布的2020版 不在预警名单中

JCR分区 WOS分区等级:Q2区

版本 按学科 分区
WOS期刊SCI分区
WOS期刊SCI分区是指SCI官方(Web of Science)为每个学科内的期刊按照IF数值排 序,将期刊按照四等分的方法划分的Q1-Q4等级,Q1代表质量最高,即常说的1区期刊。
(2021-2022年最新版)
ENGINEERING, CHEMICAL Q2
ENVIRONMENTAL SCIENCES Q2
ENGINEERING, MECHANICAL Q2
METEOROLOGY & ATMOSPHERIC SCIENCES Q2

关于2019年中科院分区升级版(试行)

分区表升级版(试行)旨在解决期刊学科体系划分与学科发展以及融合趋势的不相容问题。由于学科交叉在当代科研活动的趋势愈发显著,学科体系构建容易引发争议。为了打破学科体系给期刊评价带来的桎梏,“升级版方案”首先构建了论文层级的主题体系,然后分别计算每篇论文在所属主题的影响力,最后汇总各期刊每篇论文分值,得到“期刊超越指数”,作为分区依据。

分区表升级版(试行)的优势:一是论文层级的主题体系既能体现学科交叉特点,又可以精准揭示期刊载文的多学科性;二是采用“期刊超越指数”替代影响因子指标,解决了影响因子数学性质缺陷对评价结果的干扰。整体而言,分区表升级版(试行)突破了期刊评价中学科体系构建、评价指标选择等瓶颈问题,能够更为全面地揭示学术期刊的影响力,为科研评价“去四唯”提供解决思路。相关研究成果经过国际同行的认可,已经发表在科学计量学领域国际重要期刊。

《2019年中国科学院文献情报中心期刊分区表升级版(试行)》首次将社会科学引文数据库(SSCI)期刊纳入到分区评估中。升级版分区表(试行)设置了包括自然科学和社会科学在内的18个大类学科。基础版和升级版(试行)将过渡共存三年时间,推测在此期间各大高校和科研院所仍可能会以基础版为考核参考标准。 提示:中科院分区官方微信公众号“fenqubiao”仅提供基础版数据查询,暂无升级版数据,请注意区分。

中科院分区 查看说明

版本 大类学科 小类学科 Top期刊 综述期刊
环境科学与生态学
4区
ENVIRONMENTAL SCIENCES
环境科学
4区
ENGINEERING, CHEMICAL
工程:化工
4区
ENGINEERING, MECHANICAL
工程:机械
4区
METEOROLOGY & ATMOSPHERIC SCIENCES
气象与大气科学
4区
2021年12月
基础版
环境科学与生态学
3区
ENVIRONMENTAL SCIENCES
环境科学
4区
ENGINEERING, CHEMICAL
工程:化工
4区
ENGINEERING, MECHANICAL
工程:机械
3区
METEOROLOGY & ATMOSPHERIC SCIENCES
气象与大气科学
4区
2021年12月
升级版
环境科学与生态学
4区
ENVIRONMENTAL SCIENCES
环境科学
4区
ENGINEERING, CHEMICAL
工程:化工
3区
ENGINEERING, MECHANICAL
工程:机械
4区
METEOROLOGY & ATMOSPHERIC SCIENCES
气象与大气科学
4区
2020年12月
旧的升级版
环境科学与生态学
3区
ENVIRONMENTAL SCIENCES
环境科学
4区
ENGINEERING, CHEMICAL
工程:化工
3区
ENGINEERING, MECHANICAL
工程:机械
3区
METEOROLOGY & ATMOSPHERIC SCIENCES
气象与大气科学
4区
2022年12月
最新升级版
环境科学与生态学
4区
ENVIRONMENTAL SCIENCES
环境科学
4区
ENGINEERING, CHEMICAL
工程:化工
3区
ENGINEERING, MECHANICAL
工程:机械
4区
METEOROLOGY & ATMOSPHERIC SCIENCES
气象与大气科学
4区