Liquid biopsies and molecular imaging: friends or foes?

Abstract:
Molecular Imaging is currently central in the diagnostic field and its role seems difficult to challenge. In particular, PET/ CT is offering critical molecular information in the characterisation of disease, staging and control of therapies in oncology, quantification of biologic phenomena in cardiovascular medicine, and elucidation of the pathophysiology and treatment options in neurodegenerative diseases. However, genomic and molecular characterisation of pathological processes is being rapidly adopted. Such characterisation includes liquid biopsy, an approach that has distinct advantages and may have a significant impact on the need and role of imaging in clinical medicine. Liquid biopsy is based on the fact that several physiological and pathological conditions induce cell and tissue remodelling, leading to the rearrangement of stroma and tissue microenvironment. These events are mostly sustained by necrotic or apoptotic processes, leading to the disaggregation of tissues and the consequent dissemination of cells and cellular debris (including DNA fragments) in the intercellular space and bloodstream, where they can be detected. Independently from cell necrosis or apoptosis, cells also release cellular DNA in the extracellular space via the secretion of vesicles and exosomes. Accordingly, liquid biopsy is the sampling and analysis of non-solid biological tissue, primarily blood, to look for different biomarkers in order to non-invasively detect or monitor diseases. There are several types of liquid biopsy depending on the condition that is being studied. In cancer patients, the most intensely investigated approaches include the analysis of circulating tumour cells (CTCs) and circulating tumour DNA (ctDNA), with some tests already approved in clinical practice [1, 2]. However, the concept is extending to other pathological conditions. For example, in cardiovascular diseases, circulating endothelial cells (CECs) can be sampled [3], or isolation of protoporphyrin IX from blood samples can be used for the assessment of atherosclerosis [4]. In prenatal diagnosis, cell-free fetal DNA (cff-DNA) extracted from maternal blood or amniotic fluid can also be analysed. The cerebrospinal fluid may be sampled and analysed in the case of neurodegenerative diseases [5]. In cancer patients, liquid biopsy may be used to help find cancer at an early stage or in the course of different therapies, where it may be used to help planning appropriate or tailored treatment [6, 7]. As it can be performed sequentially over time, it can bring information on the molecular changes that are taking place in a given tumour. Along this line, CTC analysis provides a unique opportunity to study whole cells, even at the single-cell level, allowing DNA, RNA and protein-based molecular profiling, and the prospect for functional studies on tumour heterogeneity or treatment resistance to guide personalised therapy. Detection of CTCs in increasing numbers is an indicator of active metastasis. Importantly, expression of specific markers on CTCs might enable prediction of what organ site is likely to be metastasised. However, isolation of CTCs is difficult due to the rarity of the cells, thus requiring a complex process of enrichment (e.g. using cell-specific markers), isolation and then enumeration. On the other hand, plasma ctDNA analysis is attractive due to the ease with which plasma can be collected and analysed, requiring less blood extraction (2 mL) than CTC assays (10 mL) and no prior need to enrich and isolate a rare population of cells. Analysis of ctDNA gives information on the tumour mutational landscape. Additionally, ctDNA is more easily quantifiable than CTCs. Furthermore, the short half-life of ctDNA (spanning between 16 min and 13 h) allows immediate correlation with tumour cell status, thus offering the possibility of a continuous dynamic observation. However, ctDNA assays identify tumour activity but not tumour spread through circulation (i.e. occurring metastasis) since ctDNA can also come from necrotic and apoptotic Ignasi Carrió and Albert Flotats contributed equally to writing and editing this paper.
Author Listing: Ignasi Carrió;Albert Flotats
Volume: 8
Pages: 47-50
DOI: 10.1007/s40336-019-00350-3
Language: English
Journal: Clinical and Translational Imaging

Clinical and Translational Imaging

CLIN TRANSL IMAGING

影响因子:2.3 是否综述期刊:否 是否OA:否 是否预警:不在预警名单内 发行时间:2013 ISSN:2281-5872 发刊频率:6 issues per year 收录数据库:SCIE/Scopus收录 出版国家/地区:ITALY 出版社:Springer International Publishing

期刊介绍

Clinical and Translational Imaging is an international journal that publishes timely, up-to-date summaries on clinical practice and translational research and clinical applications of approved and experimental radiopharmaceuticals for diagnostic and therapeutic purposes. Coverage includes such topics as advanced preclinical evidence in the fields of physics, dosimetry, radiation biology and radiopharmacy with relevance to applications in human subjects. The journal benefits a readership of nuclear medicine practitioners and allied professionals involved in molecular imaging and therapy.

临床和转化成像是一份国际期刊,及时发布临床实践和转化研究以及用于诊断和治疗目的的获批和实验性放射性药物的临床应用的最新摘要。覆盖范围包括物理学、剂量学、辐射生物学和放射性药物学领域中与人类受试者应用相关的先进临床前证据等主题。该杂志的读者群受益的核医学从业人员和相关专业人员参与分子成像和治疗。

年发文量 45
国人发稿量 6
国人发文占比 13.33%
自引率 8.7%
平均录取率 -
平均审稿周期 -
版面费 US$3860
偏重研究方向 Medicine-Radiology, Nuclear Medicine and Imaging
期刊官网 https://www.springer.com/40336/?utm_medium=display&utm_source=letpub&utm_content=text_link&utm_term=null&utm_campaign=MLSR_40336_AWA1_CN_CNPL_letpb_mp
投稿链接 https://www.editorialmanager.com/cati/

质量指标占比

研究类文章占比 OA被引用占比 撤稿占比 出版后修正文章占比
17.78% 25.00% 0.00% 2.56%

相关指数

{{ relationActiveLabel }}
{{ item.label }}

期刊预警不是论文评价,更不是否定预警期刊发表的每项成果。《国际期刊预警名单(试行)》旨在提醒科研人员审慎选择成果发表平台、提示出版机构强化期刊质量管理。

预警期刊的识别采用定性与定量相结合的方法。通过专家咨询确立分析维度及评价指标,而后基于指标客观数据产生具体名单。

具体而言,就是通过综合评判期刊载文量、作者国际化程度、拒稿率、论文处理费(APC)、期刊超越指数、自引率、撤稿信息等,找出那些具备风险特征、具有潜在质量问题的学术期刊。最后,依据各刊数据差异,将预警级别分为高、中、低三档,风险指数依次减弱。

《国际期刊预警名单(试行)》确定原则是客观、审慎、开放。期刊分区表团队期待与科研界、学术出版机构一起,夯实科学精神,打造气正风清的学术诚信环境!真诚欢迎各界就预警名单的分析维度、使用方案、值得关切的期刊等提出建议!

预警情况 查看说明

时间 预警情况
2024年02月发布的2024版 不在预警名单中
2023年01月发布的2023版 不在预警名单中
2021年12月发布的2021版 不在预警名单中
2020年12月发布的2020版 不在预警名单中

JCR分区 WOS分区等级:Q3区

版本 按学科 分区
WOS期刊SCI分区
WOS期刊SCI分区是指SCI官方(Web of Science)为每个学科内的期刊按照IF数值排 序,将期刊按照四等分的方法划分的Q1-Q4等级,Q1代表质量最高,即常说的1区期刊。
(2021-2022年最新版)
RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Q3

关于2019年中科院分区升级版(试行)

分区表升级版(试行)旨在解决期刊学科体系划分与学科发展以及融合趋势的不相容问题。由于学科交叉在当代科研活动的趋势愈发显著,学科体系构建容易引发争议。为了打破学科体系给期刊评价带来的桎梏,“升级版方案”首先构建了论文层级的主题体系,然后分别计算每篇论文在所属主题的影响力,最后汇总各期刊每篇论文分值,得到“期刊超越指数”,作为分区依据。

分区表升级版(试行)的优势:一是论文层级的主题体系既能体现学科交叉特点,又可以精准揭示期刊载文的多学科性;二是采用“期刊超越指数”替代影响因子指标,解决了影响因子数学性质缺陷对评价结果的干扰。整体而言,分区表升级版(试行)突破了期刊评价中学科体系构建、评价指标选择等瓶颈问题,能够更为全面地揭示学术期刊的影响力,为科研评价“去四唯”提供解决思路。相关研究成果经过国际同行的认可,已经发表在科学计量学领域国际重要期刊。

《2019年中国科学院文献情报中心期刊分区表升级版(试行)》首次将社会科学引文数据库(SSCI)期刊纳入到分区评估中。升级版分区表(试行)设置了包括自然科学和社会科学在内的18个大类学科。基础版和升级版(试行)将过渡共存三年时间,推测在此期间各大高校和科研院所仍可能会以基础版为考核参考标准。 提示:中科院分区官方微信公众号“fenqubiao”仅提供基础版数据查询,暂无升级版数据,请注意区分。

中科院分区 查看说明

版本 大类学科 小类学科 Top期刊 综述期刊
医学
4区
RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
核医学
4区
2021年12月
基础版
医学
4区
RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
核医学
3区
2021年12月
升级版
医学
4区
RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
核医学
4区
2020年12月
旧的升级版
医学
4区
RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
核医学
4区
2022年12月
最新升级版
医学
4区
RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
核医学
4区