Improving Webpage Access Predictions Based on Sequence Prediction and PageRank Algorithm

Abstract:
Aim/Purpose In this article, we provide a better solution to Webpage access prediction. In particularly, our core proposed approach is to increase accuracy and efficiency by reducing the sequence space with integration of PageRank into CPT+. Background The problem of predicting the next page on a web site has become significant because of the non-stop growth of Internet in terms of the volume of contents and the mass of users. The webpage prediction is complex because we should consider multiple kinds of information such as the webpage name, the contents of the webpage, the user profile, the time between webpage visits, differences among users, and the time spent on a page or on each part of the page. Therefore, webpage access prediction draws substantial effort of the web mining research community in order to obtain valuable information and improve user experience as well. Methodology CPT+ is a complex prediction algorithm that dramatically offers more accurate predictions than other state-of-the-art models. The integration of the importance of every particular page on a website (i.e., the PageRank) regarding to its associations with other pages into CPT+ model can improve the performance of the existing model. Contribution In this paper, we propose an approach to reduce prediction space while improving accuracy through combining CPT+ and PageRank algorithms. Experimental results on several real datasets indicate the space reduced by up to between 15% Improving Webpage access Predictions 28 and 30%. As a result, the run-time is quicker. Furthermore, the prediction accuracy is improved. It is convenient that researchers go on using CPT+ to predict Webpage access. Findings Our experimental results indicate that PageRank algorithm is a good solution to improve CPT+ prediction. An amount of though approximately 15 % to 30% of redundant data is removed from datasets while improving the accuracy. Recommendations for Practitioners The result of the article could be used in developing relevant applications such as Webpage and product recommendation systems. Recommendations for Researchers The paper provides a prediction model that integrates CPT+ and PageRank algorithms to tackle the problem of complexity and accuracy. The model has been experimented against several real datasets in order to show its performance. Impact on Society Given an improving model to predict Webpage access using in several fields such as e-learning, product recommendation, link prediction, and user behavior prediction, the society can enjoy a better experience and more efficient environment while surfing the Web. Future Research We intend to further improve the accuracy of webpage access prediction by using the combination of CPT+ and other algorithms.
Author Listing: Da Thon Nguyen;Hanh T Tan;Duy Hoang Pham
Volume: 14
Pages: 027-044
DOI: 10.28945/4176
Language: English
Journal: Interdisciplinary Journal of Information, Knowledge, and Management

Interdisciplinary Journal of Information, Knowledge, and Management

影响因子:0.0 是否综述期刊:否 是否OA:否 是否预警:不在预警名单内 发行时间:- ISSN:1555-1229 发刊频率:- 收录数据库:Scopus收录 出版国家/地区:- 出版社:Informing Science Institute

期刊介绍

年发文量 -
国人发稿量 -
国人发文占比 -
自引率 0.0%
平均录取率 -
平均审稿周期 -
版面费 -
偏重研究方向 Computer Science-Computer Science (all)
期刊官网 -
投稿链接 -

质量指标占比

研究类文章占比 OA被引用占比 撤稿占比 出版后修正文章占比
0.00% 0.00% - -

相关指数

{{ relationActiveLabel }}
{{ item.label }}

期刊预警不是论文评价,更不是否定预警期刊发表的每项成果。《国际期刊预警名单(试行)》旨在提醒科研人员审慎选择成果发表平台、提示出版机构强化期刊质量管理。

预警期刊的识别采用定性与定量相结合的方法。通过专家咨询确立分析维度及评价指标,而后基于指标客观数据产生具体名单。

具体而言,就是通过综合评判期刊载文量、作者国际化程度、拒稿率、论文处理费(APC)、期刊超越指数、自引率、撤稿信息等,找出那些具备风险特征、具有潜在质量问题的学术期刊。最后,依据各刊数据差异,将预警级别分为高、中、低三档,风险指数依次减弱。

《国际期刊预警名单(试行)》确定原则是客观、审慎、开放。期刊分区表团队期待与科研界、学术出版机构一起,夯实科学精神,打造气正风清的学术诚信环境!真诚欢迎各界就预警名单的分析维度、使用方案、值得关切的期刊等提出建议!

预警情况 查看说明

时间 预警情况
2024年02月发布的2024版 不在预警名单中
2023年01月发布的2023版 不在预警名单中
2021年12月发布的2021版 不在预警名单中
2020年12月发布的2020版 不在预警名单中

JCR分区 WOS分区等级:Q0区

版本 按学科 分区
WOS期刊SCI分区
WOS期刊SCI分区是指SCI官方(Web of Science)为每个学科内的期刊按照IF数值排 序,将期刊按照四等分的方法划分的Q1-Q4等级,Q1代表质量最高,即常说的1区期刊。
(2021-2022年最新版)

关于2019年中科院分区升级版(试行)

分区表升级版(试行)旨在解决期刊学科体系划分与学科发展以及融合趋势的不相容问题。由于学科交叉在当代科研活动的趋势愈发显著,学科体系构建容易引发争议。为了打破学科体系给期刊评价带来的桎梏,“升级版方案”首先构建了论文层级的主题体系,然后分别计算每篇论文在所属主题的影响力,最后汇总各期刊每篇论文分值,得到“期刊超越指数”,作为分区依据。

分区表升级版(试行)的优势:一是论文层级的主题体系既能体现学科交叉特点,又可以精准揭示期刊载文的多学科性;二是采用“期刊超越指数”替代影响因子指标,解决了影响因子数学性质缺陷对评价结果的干扰。整体而言,分区表升级版(试行)突破了期刊评价中学科体系构建、评价指标选择等瓶颈问题,能够更为全面地揭示学术期刊的影响力,为科研评价“去四唯”提供解决思路。相关研究成果经过国际同行的认可,已经发表在科学计量学领域国际重要期刊。

《2019年中国科学院文献情报中心期刊分区表升级版(试行)》首次将社会科学引文数据库(SSCI)期刊纳入到分区评估中。升级版分区表(试行)设置了包括自然科学和社会科学在内的18个大类学科。基础版和升级版(试行)将过渡共存三年时间,推测在此期间各大高校和科研院所仍可能会以基础版为考核参考标准。 提示:中科院分区官方微信公众号“fenqubiao”仅提供基础版数据查询,暂无升级版数据,请注意区分。

中科院分区 查看说明

版本 大类学科 小类学科 Top期刊 综述期刊
暂无数据