Mesozoic–Cenozoic geological evolution of the Himalayan-Tibetan orogen and working tectonic hypotheses

Abstract:
The Himalayan-Tibetan orogen culminated during the Cenozoic India – Asia collision, but its geological framework and initial growth were fundamentally the result of multiple, previous ocean closure and intercontinental suturing events. As such, the Himalayan-Tibetan orogen provides an ideal laboratory to investigate geological signatures of the suturing process in general, and how the Earth s highest and largest orogenic feature formed in specific. This paper synthesizes the Triassic through Cenozoic geology of the central Himalayan-Tibetan orogen and presents our tectonic interpretations in a time series of schematic lithosphere-scale cross-sections and paleogeographic maps. We suggest that north-dipping subducting slabs beneath Asian continental terranes associated with closure of the Paleo-, Meso-, and Neo-Tethys oceans experienced phases of southward trench retreat prior to intercontinental suturing. These trench retreat events created ophiolites in forearc extensional settings and/or a backarc oceanic basins between rifted segments of upper-plate continental margin arcs. This process may have occurred at least three times along the southern Asian margin during northward subduction of Neo-Tethys oceanic lithosphere: from ∼174 to 156 Ma; 132 to 120 Ma; and 90 to 70 Ma. At most other times, the Tibetan terranes underwent Cordilleran-style or collisional contractional deformation. Geological records indicate that most of northern and central Tibet (the Hoh-Xil and Qiangtang terranes, respectively) were uplifted above sea level by Jurassic time, and southern Tibet (the Lhasa terrane) north of its forearc region has been above sea level since ∼100 Ma. Stratigraphic evidence indicates that the northern Himalayan margin of India collided with an Asian-affinity subduction complex – forearc – arc system beginning at ∼60 Ma. Both the Himalaya (composed of Indian crust) and Tibet show continuous geological records of orogenesis since ∼60 Ma. As no evidence exists in the rock record for a younger suture, the simplest interpretation of the geology is that India – Asia collision initiated at ∼60 Ma. Plate circuit, paleomagnetic, and structural reconstructions, however, suggest that the southern margin of Asia was too far north of India to have collided with it at that time. Seismic tomographic images are also suggestive of a second, more southerly Neo-Tethyan oceanic slab in the lower mantle where the northernmost margin of India may have been located at ∼60 Ma. The geology of Tibet and the India – Asia suture zone permits an alternative collision scenario in which the continental margin arc along southern Asia (the Gangdese arc) was split by extension beginning at ∼90 Ma, and along with its forearc to the south (the Xigaze forearc), rifted southward and opened a backarc ocean basin. The rifted arc collided with India at ∼60 Ma whereas the hypothetical backarc ocean basin may not have been consumed until ∼45 Ma. A compilation of igneous age data from Tibet shows that the most recent phase of Gangdese arc magmatism in the southern Lhasa terrane initiated at ∼70 Ma, peaked at ∼51 Ma, and terminated at ∼38 Ma. Cenozoic potassic-adakitic magmatism initiated at ∼45 Ma within a ∼200-km-wide elliptical area within the northern Qiangtang terrane, after which it swept westward and southward with time across central Tibet until ∼26 Ma. At 26 to 23 Ma, potassic-adakitic magmatism swept southward across the Lhasa terrane, a narrow (∼20 km width), orogen-parallel basin developed at low elevation along the axis of the India – Asia suture zone (the Kailas basin), and Greater Himalayan Sequence rocks began extruding southward between the South Tibetan Detachment and Main Central Thrust. The Kailas basin was then uplifted to >4 km elevation by ∼20 Ma, after which parts of the India – Asia suture zone and Gangdese arc experienced >6 km of exhumation (between ∼20 and 16 Ma). Between ∼16 and 12 Ma, slip along the South Tibetan Detachment terminated and east-west extension initiated in the northern Himalaya and Tibet. Potassic-adakitic magmatism in the Lhasa terrane shows a northward younging trend in the age of its termination, beginning at 20 to 18 Ma until volcanism ended at 8 Ma. We interpret the post-45 Ma geological evolution in the context of the subduction dynamics of Indian continental lithosphere and its interplay with delamination of Asian mantle lithosphere.
Author Listing: Paul A Kapp;Peter G. DeCelles
Volume: 319
Pages: 159 - 254
DOI: 10.2475/03.2019.01
Language: English
Journal: American Journal of Science

AMERICAN JOURNAL OF SCIENCE

AM J SCI

影响因子:1.9 是否综述期刊:否 是否OA:否 是否预警:不在预警名单内 发行时间:1818 ISSN:0002-9599 发刊频率:Monthly 收录数据库:SCIE/Scopus收录 出版国家/地区:UNITED STATES 出版社:Yale University

期刊介绍

The American Journal of Science (AJS), founded in 1818 by Benjamin Silliman, is the oldest scientific journal in the United States that has been published continuously. The Journal is devoted to geology and related sciences and publishes articles from around the world presenting results of major research from all earth sciences. Readers are primarily earth scientists in academia and government institutions.

《美国科学杂志》(American Journal of Science,简称AJS),由本杰明·西利曼(Benjamin Silliman)于1818年创办,是美国历史最悠久的连续出版的科学期刊。该杂志致力于地质学和相关科学,发表来自世界各地的文章,介绍所有地球科学的主要研究成果。读者主要是学术界和政府机构的地球科学家。

年发文量 12
国人发稿量 3
国人发文占比 25%
自引率 0.0%
平均录取率 一般
平均审稿周期 >12周,或约稿
版面费 -
偏重研究方向 地学-地球科学综合
期刊官网 http://www.ajsonline.org/
投稿链接 http://www.ajsonline.org/site/misc/ifora.xhtml

质量指标占比

研究类文章占比 OA被引用占比 撤稿占比 出版后修正文章占比
100.00% 12.66% 0.00% 9.52%

相关指数

{{ relationActiveLabel }}
{{ item.label }}

期刊预警不是论文评价,更不是否定预警期刊发表的每项成果。《国际期刊预警名单(试行)》旨在提醒科研人员审慎选择成果发表平台、提示出版机构强化期刊质量管理。

预警期刊的识别采用定性与定量相结合的方法。通过专家咨询确立分析维度及评价指标,而后基于指标客观数据产生具体名单。

具体而言,就是通过综合评判期刊载文量、作者国际化程度、拒稿率、论文处理费(APC)、期刊超越指数、自引率、撤稿信息等,找出那些具备风险特征、具有潜在质量问题的学术期刊。最后,依据各刊数据差异,将预警级别分为高、中、低三档,风险指数依次减弱。

《国际期刊预警名单(试行)》确定原则是客观、审慎、开放。期刊分区表团队期待与科研界、学术出版机构一起,夯实科学精神,打造气正风清的学术诚信环境!真诚欢迎各界就预警名单的分析维度、使用方案、值得关切的期刊等提出建议!

预警情况 查看说明

时间 预警情况
2024年02月发布的2024版 不在预警名单中
2023年01月发布的2023版 不在预警名单中
2021年12月发布的2021版 不在预警名单中
2020年12月发布的2020版 不在预警名单中

JCR分区 WOS分区等级:Q2区

版本 按学科 分区
WOS期刊SCI分区
WOS期刊SCI分区是指SCI官方(Web of Science)为每个学科内的期刊按照IF数值排 序,将期刊按照四等分的方法划分的Q1-Q4等级,Q1代表质量最高,即常说的1区期刊。
(2021-2022年最新版)
GEOSCIENCES, MULTIDISCIPLINARY Q2

关于2019年中科院分区升级版(试行)

分区表升级版(试行)旨在解决期刊学科体系划分与学科发展以及融合趋势的不相容问题。由于学科交叉在当代科研活动的趋势愈发显著,学科体系构建容易引发争议。为了打破学科体系给期刊评价带来的桎梏,“升级版方案”首先构建了论文层级的主题体系,然后分别计算每篇论文在所属主题的影响力,最后汇总各期刊每篇论文分值,得到“期刊超越指数”,作为分区依据。

分区表升级版(试行)的优势:一是论文层级的主题体系既能体现学科交叉特点,又可以精准揭示期刊载文的多学科性;二是采用“期刊超越指数”替代影响因子指标,解决了影响因子数学性质缺陷对评价结果的干扰。整体而言,分区表升级版(试行)突破了期刊评价中学科体系构建、评价指标选择等瓶颈问题,能够更为全面地揭示学术期刊的影响力,为科研评价“去四唯”提供解决思路。相关研究成果经过国际同行的认可,已经发表在科学计量学领域国际重要期刊。

《2019年中国科学院文献情报中心期刊分区表升级版(试行)》首次将社会科学引文数据库(SSCI)期刊纳入到分区评估中。升级版分区表(试行)设置了包括自然科学和社会科学在内的18个大类学科。基础版和升级版(试行)将过渡共存三年时间,推测在此期间各大高校和科研院所仍可能会以基础版为考核参考标准。 提示:中科院分区官方微信公众号“fenqubiao”仅提供基础版数据查询,暂无升级版数据,请注意区分。

中科院分区 查看说明

版本 大类学科 小类学科 Top期刊 综述期刊
地球科学
2区
GEOSCIENCES, MULTIDISCIPLINARY
地球科学:综合
3区
2021年12月
基础版
地学
2区
GEOSCIENCES, MULTIDISCIPLINARY
地球科学综合
2区
2021年12月
升级版
地球科学
2区
GEOSCIENCES, MULTIDISCIPLINARY
地球科学综合
3区
2020年12月
旧的升级版
地球科学
3区
GEOSCIENCES, MULTIDISCIPLINARY
地球科学综合
3区
2022年12月
最新升级版
地球科学
3区
GEOSCIENCES, MULTIDISCIPLINARY
地球科学:综合
3区